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INFLUENCE OF MICROTURBULENCE ON EARLY TIME HANE STRUCTURE

I. INTRODUCTION

An important issue to the Defense Nuclear Agency is understanding the

physical processes involved in the structuring of the ionosphere following

a HANE. The large-scale, long-lasting ionization irregularities produced

by a HANE can adversely impact radar and communications systems (i.e.,

scintillations). Thus, it is crucial to understand the structuring

.4?-., mechanisms associated with HANES in order to obtain a predictive capability

which could aid the operation of these systems in a nuclear environment.

Recently, there has been renewed interest in the DNA community concerning

early time HANE processes (t < few sec). For example, DNA is presently

funding a major laser experiment at NRL to explore the physics associated

with early time HANE evolution.

Among the various early time processes to be understood, the

occurrence of plasma microinstabilities and of structure producing

processes (i.e., interchange instabilities) are two important areas. To

our knowledge, these two areas have been treated somewhat independently of

each other. The studies of microturbulence have been directed at

explaining the coupling of debris and air plasmas (i.e., momentum

. exchange), and on the heating of the plasmas (i.e., energy exchange) (Lampe

et al., 1975). On the other hand, the studies of early time structuring

processes, which have been limited to date, do not directly include

microturbulence effects. It should be noted that microturbulent processes

have been included indirectly in an early time structure analysis. The

work of Brecht et al. (1982) addresses the growth of Rayleigh-Taylor

instabilities based upon the conditions prescribed by the microphysics

(e.g., thickness, temperature, density within the coupling shell).

The purpose of this report is to suggest a direct effect of

C} icroturbulence on the evolution of early time interchange instabilities.

Namely, that microinstabilities can provide a dissipation mechanism (via
the anomalous transport properties associated with them) which can cause

saturation of an interchange instability through a nonlinear mode coupling

process. In order to demonstrate this point, we consider a simplified

model. We consider a two-fluid plasma model (ions and electrons) which

Manuscript approved January 24, 1984.

- % "



. -. r.'.f - ,. W .

incorporates a gravitational field (g) and a density inhomogeneity (Vn).

We develop a set of nonlinear mode coupling equations for this situation

and show that the intermediate regime of the instability can saturate by

transferring energy from the growing modes to the damped modes because of

the nonlinear electron E x B motion. The crucial point in the analysis is

that anomalous electron-ion collisions provide the dissipation mechanism

for the damped modes.

The organization of the paper is as follows. In the next section we
derive the nonlinear mode equations. In Section III we present the results

for a two mode coupling process. Finally, in Section IV we discuss the

implications of our theory for early time HANE processes and describe our

future efforts in this area.

II. DERIVATION OF MODE COUPLING EQUATIONS

The geometry and plasma configuration used in the analysis are shown

in Fig. 1. We take the ambient magnetic field to be in the z direction

(B - B e z), and the density to be inhomogeneous in the x direction (n -

n(x)). The fundamental assumptions used in the analysis are the

following. We assume perturbed quantities to be proportional to exp[i(kxx

+ kyy - wt)] with kXL >> 1, kL >> 1, kPi << 1, ki << 1, and w << i
where L - (aUn n/ax) -I is the density gradient scale length pi "

(Ti/M) 1/2/ni is the mean ion Larmor radius, and li " eB/mic is the ion

cyclotron frequency. We consider a weakly collisional plasma such that

Vei << 1, V./ai << 1, and v /n << 1 where v represents a collisionVei/ e  i ia

frequency between the a and $ species, and Qe M eB/me c is the electron

cyclotron frequency. Here, the collisions are attributed to wave-particle

interactions, i.e., anomalous collisions. Finally, we assume quasi-

neutrality (ne - ni).

The equations used in the analysis are continuity, momentum transfer,

and charge conservation:

an + 7*nV 0 (1)

o - (- 7,+ -c1V x B) -v2 --- V (2)
O m C _V+ie ee) n2 fl -ei(ye j)(2

e
dVi e 1 2 Vn 1

d' mi c-i x--n - Vie'-i -e -nm =i

2

},' .-.: , , , . ,',,- .. -. , . ., . . - -,. ..-.- *. ,. . .-.- ,..... .. .' .'..-*'. , .*, ¢ ,h .,'-
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Figure 1: Plasma configuration and slab geometry. The magnetic field is
in the z-direction (B -B ez ), the density gradient and gravity
are in the x-direction (Vn - 3n/3x e x and -g e X) , and the

wave vector is in the xy plane transverse to B.
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V.4- V.[n(vi - Ve] -0 (4)

where a denotes species (e,i), v (T a/ma)1/2 is the thermal velocity, and
"i is the ion stress tensor such that (Stix, 1969)

i 2 1 n i z z n=--[ v -i " : ai2[(V  + -- "V)V i x In +.z - .,ii~

- 0.3 v [(v2 + --Vn.v)v 1 _ (c+ x .v)v z]. (5)

The first term in Eq. (5) represents finite ion Larmor radius corrections

(Roberts and Taylor, 1962), while the second term represents ion viscosity

effects (i.e., shear stress). The compressional stress term in Eq. (5) has

been neglected since it is smaller by a factor ko than the first two terms

(Stix, 1969).

To lowest order the equilibrium particle drifts are given by (from

Eqs. (2) and (3))

Ve0 " V deey (6)

O (Vdi + v)ey (7)

where V (v2/a/)31n n/3x is the diamagnetic drift velocity of species a

and V - g/11 is the ion gravitational drift velocity.

We now perturb Eqs. (1) - (4) about this equilibrium and let n - no +

Sn, * - 6*, and V - Vo + 6V + V H ere, 6V is the first order

velocity perturbation and 6Va2 is the second order velocity perturbation
2 2

(i.e., proportional to small factors such as v ei/e , Vie/AiI v ii/ai, k pip.

" li-d/dt). The first order perturbed velocities are

~el T-- z8e e 0

2
V i6vil I* - , z (9):..

where 4 - e8/Ti + 6n/no.

4
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The second order velocities are
V 2 T

Tei vi  e n(10)
e2 e i)V n

.3V2= - 2(L_ + VO " V* - Pie2(1 +Tev
142 'i at 0 V. T2 n0

2
v i  Vn

+ P ' [(,72 + !2 .v) vj x e+ (e x 0-)*

2 v 2 0VU0  VU ~(1
+ _0.3 p2[(vI .v)v* (e x -. V)V, x, (11)

i n i no z n0

Substituting Eqs. (8) - (11) into the electron continuity (Eq. (1)) and

charge conservation equations (Eq. (4)), we arrive at the coupled set of

equations for 6n and 6

a n i e1 6 n0 2 6n i e. n
n • V L -- D V - v - x e V - (12)at n0  ni  T - z n0 n 0 i  Ti z n0

'J and

22
Sn 2 rr 3  *2 vi V 4e(.60 n~x eov -- P - x ezo 3V'-~ v +1(

(v/(13)

where D = VeP~ 2is the electron diffusion coefficient and 2 Mv2/

i/S1e)(1 + Te/Ti).

Thus, Eqs. (12) and (13) represent nonlinear mode coupling equations

for the Rayleigh-Taylor instability in the intermediate wavelength regime

(i.e., kL >> 1 and koi << 1). The physics contained in Eqs. (12) and (13)

is described as follows. The second term on the LHS of Eq. (12) leads to

d growth of the density perturbation while the third term leads to damping

because of electron diffusion. The term on the RHS of Eq. (12) is the

electron E x B nonlinearity. The first term on the LHS of Eq. (13)

represents the differential motion of the electrons and ions in the y

direction because of gravity. The first term in brackets is the ion

polarization term while the second term contains ion viscosity effects.

.. . ..~~~ ~~~. "d. ....*. .. . . .. . . ...- . . ..
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III. ANALYSIS OF MODE COUPLING EQUATIONS

A. Linear Theory

We linearize Eqs. (12) aiid (13) by neglecting the electron E x B

nonlinearity in Eq. (12). We assume that perturbations are proportional to

exp[i(kex + y- wt)]. From Eq. (12), it can be shown that

6n kyvi(Pi /L) e26. (14)
n 0 +iv k 2 P2  Ti

ei es
-1 -1.

where L (Vn/n) - (9 In nO/3x) is the scale length of the density~*-0 A0 0
gradient. Similarly, from Eq. (13) it can be shown that

-w (i+ k 2 P 2(w +W w +i 0.3 v ik 2 P 2) n (15)

2 P2 [w + + 0.3 v 2 2]

.' where wg = kyg/si  Combining Eqs. (14) and (15), we obtain the linear

dispersion equation

2wj + bw + c - 0 (16)

where

b -kV + i(v 2 P2  + 0.3 vk 2 P2 ) (17)y iO ei es ii i

Lk . [2,,. / ,) . 2 2
c - -P /L- - iveik Ps] x (18)

k 1 y i ii ei
[kV +i 0.3 vk 2 21

and V Vdi + Vg, Vdi - v2/iL and Vg = - g/ni" Equation (16) has the

solution

- - b/2 + (b2/4 - c)1/ 2  (19)

6



which is rather messy given the complexity of b and c (Eqs. (17) and

(18)). In order to gain insight into the solution of Eq. (19), it is best

to consider several limiting cases.

1. Collisionless plasma (Vei vii O)

In the collisionless limit, the dispersion equation is given by
k2

2 
k 2

w _kV w - Y g= 0 (20)
y io k 2

which is a well known result (Roberts and Taylor, 1962). The solution to

Eq. (20) is

S1k2
2  1/2

v0+ - [kyV + 4 -- L -] (21)
2 y i0t2 y io k2

In the limit k2V2 << 4g/L, the eigenfrequency is
io

k (g I)1/2 (2

so that instability results if g and Vn are oppositely directed, i.e., g/L

< 0. On the other hand, in the limit k2V 2 > 4g/L, the mode becomes stable

(y V 0) and propagating (wr - y V i )  Since it is generally the case that

V Vd- (pi/L)vi, the stabilization criterion is roughlyio di

k 2P2 > 4gL/v2 (23)

and is therefore known as 'finite Larmor radius stabilization'. An

important point is that the stable modes have y - 0 and are not damped,

i.e., y < 0. This is a crutial consideration in the mode coupling

saturation mechanism since damped modes are required as energy sinks.

2. Collisional plasma (Vei 0 0 and v )

We now consider the strong collision limit given by v ik 2 i > > W'

kyViO. For this case the dispersion equation

22
iw 0.3 =32 2 _u 2 2  2 2 (24)viik i 2 ii PiVeik es

7

r .L! A-' P .'*,' .. .



"-. S.which has the solution

k g/L k 2p 2 1
22 +Ve s- (25)

k 2 0.3 v- k P+

S..- Again instability can result for g/L < 0 (oppositely directed g and Vn) as

long as

k 2

y Ig/Ll 2 2- ' V k. 2 > s (26)

k 0.3 viik p i

In the opposite limit,

2 ILI (27)
Veik pes k 2 0.3 Vik 2p

themoes are Vi 2 Pii
the modes are damped, i.e., y < 0. The important point is that the

electron-ion collision term provides a dissipation mechanism and can

produce modes with a negative growth rate. Hence, anomalous electron-ion

collisions can produce damped modes in the collisional limit (y < 0). This

is in contrast to collisionless finite Larmor radius stabilization which

produces stable propagating waves (X - 0). Finally, we note the similarity

of Eq. (25) to that of the usual collisional Rayleigh-Taylor mode which has

a growth rate y = - (k /k )(g/Lvn). In the present case, the

4, quantity 0.3 v i replaces yin (Hudson and Kennel, 1975).

B. Nonlinear Theory

To illustrate the nonlinear saturation of the Rayleigh-Taylor

instability we consider the collisional limit and follow the analysis

prescribed in Rognlein and Weinstock (1974). Mathematically, this analysis

closely follows that of Chaturvedi and Ossakow (1977), but the underlying

" physical concepts and applications are substantially different. The

equations of interest are

2 2
3 Sn v 6 0  V 0  2 6n v e 6n
-- n 7Ti e - DV -7-v- xe 7- (28)0 n n e n T z n

and

xn V 0.3 v 44 (16± +n)(-I  z no 0ii I T no0
iii- 0 T- +- -0 (29)

'- - 8

ft% * ., , .* .- ,* . .% . .- . . % . . .. . . . 5% % .s %.% -,% % . . . 5,•. = .
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where Eq. (28) is the same as Eq. (12) and Eq. (29) follows from Eq. (13)

by neglecting ion inertial effects.

Equation (28) is linear and one can obtain a simple relationship

between 6 and Sn based upon it, namely,

e-- a - i r n(30)T i  n 03o

where

9 ky I (31)

0.3 v k2 2 k2v2

ii i i

and we have assumed kyL > ll/Vii.

Equation (27) is nonlinear and can be rewritten as
2

3 n i n +vi e 6t e ,n
a 0- M - n0-T+e n • - (32)

0 nO - Ti- z n

where y is the net linear growth (or damping) of modes. The term y results

f rom a combination of the second term on the LHS of Eq. (28) (the growing

term) and the third term on the LHS of Eq. (28) (the damping term), and is

given by

-2

= 3y 3)/L 2 2
I 03 22 -ei es

viik pi

for gIL < 0.

We substitute a two-dimensional perturbation of the form

n-A sin(k y -t) coskx (34)
n 1,1 y x

*and (from Eq. (29))

24 - r A cos (kyy - wt) cos k x (35)T i  AII x

into the nonlinear term of Eq. (32). This procedure yields the following

result

9
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V - x e g yk A sin 2 k x, (36)
ST z n 2 ;02 xA11 x

1 0 0.6 v k

that is, a second spatial harmonic in the x-direction (along the density

gradient) is produced. Thus, we consider a general perturbation of the

form

n sin (k y-Wt) cos k x +A sin 2 k x (37)
0 A'l y x 2,0

Substituting Eq. (37) into Eq. (32) and making use of Eq. (30), we

arrive at the following set of coupled nonlinear differential equations for

the mode amplitudes

-A 1 1 - y1 ,1A1,1 - a AIA 2 0  (38)

and

LA 2
- 2,0 2,0A2 ,0  2 1,1 (39)

where the coupling coefficient is

k2k2  9 (40)

X k2 0.3 vik 22
ii Oi

The mode A2,0 is linearly damped (i.e., y2,0 < 0) which is clear from

Eq. (33) since k, - 0 for this mode. Thus, the action of the nonlinear

E x B term is to transfer energy from a growing mode (A,1 ) to a damped

mode (A2,0 ) via a mode coupling interaction. This is shown schematically

in Fig. 2. It is possible then to set up a steady state situation such

that 3A1 1/3t - 0 and aA2 ,0/3t - 0. One can show that this results in the

following set of steady state amplitudes

A 0 - ~ 1 (41)A2,0 a k xL

and

10
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-+ 2, 2, )1/2A 1 1 ' A1 A2 0 )

(k2  i k 2p2 .0.3 v k2P2 1/2

k 2' J ( 4 2 )

.4.y x

We point out that for l1,y1 1 > 'Y2,01, one finds that A2,0 > A,1 so

that the damped modes can be nonlinearily driven to larger amplitudes than

the linear driven modes. These results are similar to those of Rognlein

and Weinstock (1974), Chaturvedi and Ossakow (1977) and Chaturvedi and

Ossakow (1979). Finally, although a rather simple two-mode analysis has

been presented, numerical simulations using many modes for both the

collisional Rayleigh-Taylor and E x B instability are consistent with this

analysis (Keskinen et al., 1980a,b).

DAMPED
..4% y<O

kx  (0,2

Figure 2: Schematic of mode coupling process. The growing and damped

modes are shown in k space. The coupling of the growing (1,1)

mode and the damped (0,2) mode is also shown.

.4.



IV. DISCUSSION

The purpose of this paper has been to suggest an important influence

of microturbulence on the early time structuring of a HANE. We consider

the question, how do anomalous collisions produced by microturbulence

affect the development of interchange instabilities? To answer this

question, we have adopted a simple two-fluid model of the intermediate

wavelength Rayleigh-Taylor instability as a test problem. Specifically, we

have developed a two-dimensional nonlinear mode coupling theory of the

Rayleigh-Taylor instability in the presence of microturbulence. The

primary effect of the microturbulence is to generate anomalous collisions

between electrons and ions, as well as ions and ions; an effect considered

to be very important in the early time evolution of a HANE. Examples of

instabilities investigated for early time HANE applications are the ion-ion

counter-streaming instabilities, the modified-two-stream instability, the

ion acoustic instability, and the beam cyclotron instability (Lampe et al.,

1975). Lampe et al. (1975) have shown that these instabilities can produce
significant anomalous collisions between particles, e.g., v ei < wpe for the

modified two stream and v i < Wh for the magnetized ion-ion counter-

streaming instabilities where w-e is the electron plasma frequency and wh

is the lower hybrid frequency. We note that in the model considered, the

concept of anomalous ion-ion collisions for a single ion fluid is unclear,

i.e., anomalous collisionless viscosity is not well understood, but it is a

valid concept for a multi-ion species plasma. Thus, as noted in the

introduction, the problem addressed in this paper should be considered as

'. an idealized test problem which highlights a potentially important effect

in early time UNE physics.

The major result of this work is that the intermediate wavelength

modes of the Rayleigh-Taylor instability can be stabilized via a mode

coupling process in the collisional regime. Basically, wave energy is

transferred nonlinearly from growing modes to damped modes, and a steady

state can result. Anomalous electron-ion collisions play a crucial role in

that they provide a dissipation mechanism which produces a set of damped

. modes. This is in contrast to stabilization of the instability due to
finite Larmor radius effects which does not produce damped modes, but

rather propagating modes with y- 0.

12



S.. A considerable amount of work remains to be done on this problem.

Within the context of the simple model developed in this paper two avenues

of research are presently being pursued. First, numerical analysis is

underway to consider the many-mode situation which is more realistic. In

this analysis, a pseudo-spectral code is being used which has proved

valuable in understanding the mode coupling stabilization of the lower-

hybrid-drift instability (Drake et al., 1983a,b). Second, the effects-of

ion inertia need to be included self-consistently to understand the

transition from the collisionless to collisional regime. Again, the

numerical techniques being used allow for this.

While the above described work will provide a better understanding of

the nonlinear stabilization of the Rayleigh-Taylor instability, it does not

directly apply to early time HANE phenomena. It does provide insight into

potentially important effects, and the development of relevant numerical

tools. However, considerably different models need to be developed for

early time HANE behavior. The types of issues that should be addressed are

as follows:

a 1. A stability analysis of early time HANE has been performed by

Brecht and Papadopoulos (1979). They considered the development of a

Rayleigh-Taylor instability driven by forces associated with laminar-like

acceleration of ions within the coupling shell and with the curvature of

the magnetic field lines. Another effect not considered in Brecht and

Papadopoulos (1979) is the deceleration of the coupling shell due to line

tying currents to the conducting ionosphere (Pilipp, 1971; Fedder, 1980)

which could also lead to a Rayleigh-Taylor instability. The point is that

there are several mechanisms that could produce early time structure

instabilities and that a nonlinear analysis of these instabilities,

incorporating microturbulence via anomalous collisions, is warranted.

However, this is somewhat more complicated than the present calculation

since at least two ion species are required in the analysis, and electro-

magnetic effects may need to be included.

2. Another possibility for the generation of structure (i.e., density

irregularities) in early time HANE is the onset of the Richtmeyer-Meshkov

instability (Richtmeyer, 1960; Andronov et al., 1976). This instability

grows linearly with time, as opposed to exponentially, and can occur when a

13
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shock wave passes through an irregular (corrugated) interface from a less

dense to a more dense fluid. The turbulence generated from this

instability may also be influenced by microturbulence, as in the case of

the more standard interchange instability case.

3. It has also been suggested that the weapon debris is 'pre-

structured' by the 'nuts and bolts' of the device itself (Chesnut, private

communication). The subsequent evolution of this structure could also be

affected by microturbulence. For example, the wavenumber spectrum of the

turbulence could be altered by the microturbulence through a mode coupling

process.

In conclusion, we have shown that microturbulence, via its associated

anomalous collisional effects, can influence the nonlinear development of

the collisional Rayleigh-Taylor instability. Namely, it can lead to the

stabilization of the intermediate wavelength modes through a two-

dimensional mode coupling process. Anomalous electron-ion collisions

provide the needed dissipation mechanism. Thus, microturbulence could play

an important role in the development of structure for early time HANE

phenomena. We have given some examples of the structure problems that

could be affected by microturbulence and are relevant to early time HANE

processes. Admittedly, some of these ideas are speculative at this time,

but it is clear that further research is needed in this area.
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